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Abstract.

The present work is an amendment to Glauert’s optimum rotor disk solution for the maximum power coefficient, CPmax
,

as a function of tip speed ratio, λ. First, an alternate mathematical approach is pursued towards the optimization problem by

means of calculus of variations. Secondly, analytical solutions for thrust and bending moment coefficients, CT and CBe, are

derived, where an interesting characteristic is revealed pertaining to their asymptotic behavior. In addition, the limit case of the5

non-rotating actuator disk for λ→ 0 is shown for all three performance coefficients by repeated use of L’Hôpital’s theorem.

1 Rotor Disk Theory — Axial/Angular Induction Factors & Power Coefficient

The classical rotor disk formulation according to Glauert (1935) has been documented in various texts (Wilson et al., 1974;

Hansen, 2008; Manwell et al., 2009; Burton et al., 2011; Wood, 2011; Schaffarczyk, 2014; Sørensen, 2016; Schmitz, 2019). In

the following, only the primary relations relevant to this work are summarized:10

Consider an axi-symmetric streamtube model that encompasses a wind turbine. The cross section, where the rotor is located,

can be represented by a thin rotor disk of area, A = πR2, where R is the disk radius. The axial induction factor, a, determines

the reduction in wind speed, V0, at the disk. This coefficient is defined as

a = 1− u

V0
, (1)

where u is the axial speed at the rotor disk. As a consequence of rotor thrust, there exists a discontinuity in pressure, ∆p, at15

the disk. Therefore, Bernoulli’s equation is applied both upstream and downstream of the disk. Adding these two equations

together allows to solve for ∆p, i.e. the pressure jump arising from disk theory

∆p = 2ρV 2
0 a(1− a) (2)

in terms of the fluid density, ρ, V0 and a as shown. Next, disk rotation is added at an angular speed, Ω. The wake angular

velocity component, ω, just downstream of the disk, however, is affected by a rotor disk torque in the circumferential direction.20

The angular induction factor, a′, relates the wake angular velocity to the angular speed of the rotor disk:

a′ =
ω

2Ω
(3)
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Bernoulli’s equation is applied once more upstream and downstream of the rotor disk. Note that in Glauert’s theory, the

assumption is that the same pressure jump, ∆p, that generates thrust also generates rotor torque and power. The resulting ∆p

equation arising from added wake rotation becomes:25

∆p = 2ρV 2
0 a′(1 + a′)λ2

r (4)

A practical relation between a and a′ is obtained by equating Eqs. (2) and (4) such that

λ2
r =

a(1− a)
a′(1 + a′)

, (5)

where λr = r
R is the local tip speed ratio, with r

R being the non-dimensional blade radius and λ = ΩR
V0

the tip speed ratio.

In rotor disk theory, the rotor power coefficient, CP = P/( 1
2ρV 2

0 A), with P being rotor power, is obtained by the following30

integral:

CP =
8
λ2

λ∫

0

a′(1− a)λ3
r dλr (6)

2 Glauert’s Original Optimum Solution

In 1935, aerodynamicist Hermann Glauert approached the mathematical optimization problem of maximizing CP as a function

of λ. Glauert’s formal definition of the objective function f is given as:35

f(a,a′) = a′(1− a) (7)

For the sake of brevity, Glauert’s detailed derivation is not presented here but is included in modified form in Appendix A.

It concludes in a third-order polynomial for a(λr)

16a3− 24a2 + (9− 3λ2
r)a + (λ2

r − 1) = 0 (8)

which can be solved iteratively using, for example, a Newton-Raphson algorithm. Glauert also found a simple expression for40

a′(a) that reads:

a′ =
1− 3a

4a− 1
(9)

Next, Glauert substituted the optimum solutions for a(λr) and a′(a) back into Eq. (6) and solved for the exact integral for

the maximum power coefficient, CPmax , as a function of tip speed ratio, λ

CPmax
=

1
λ2
·
(

2
9

)3[64
5

x5 + 72x4 + 124x3 + 38x2− 63x− 12lnx− 4
x

]x1=
1
4

x2=1−3a2

(10)45

where a2 is the corresponding solution of a(λr) when evaluating Eq. (8) at λ. The exact CPmax
integral from Eq. (10) converges

to the theoretical Betz limit at 16
27 ≈ 0.5926 for high λ. The reader is referred to Appendix A for details.

In the present paper, Glauert’s work is amended first by finding a simple alternative solution based on calculus of variations

and formally showing the behavior for low and high λ, and then by deriving corresponding exact integrals for thrust and

bending moment coefficients, CT and CBe.50
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2.1 A Calculus of Variations Solution for CPmax

A Lagrangian function, L(a,a′,X ), is defined as

L(a,a′,X ) = f(a,a′) +X g(a,a′) (11)

where f(a,a′) = a′(1− a) is the objective function from Eq. (7), g(a,a′) = a(1− a)− a′(1+ a′)λ2
r is the equality constraint

from Eq. (5), andX is the Lagrange multiplier. To maximize f(a,a′) under the equality constraint of g(a,a′) = 0, the stationary55

points of L(a,a′,X ) must be determined by setting all partial derivatives of L with respect to a, a′, and X equal to 0. Those

partial derivatives become:

∂L
∂a

=−a′+X (1− 2a) = 0 (12)

∂L
∂a′

= 1− a−Xλ2
r(1 +2a′) = 0 (13)60

∂L
∂X = a(1− a)− a′(1 + a′)λ2

r = 0 (14)

The goal is to solve this system of equations for polynomials a(λr) and a′(λr). This can be done multiple ways; however, a

simple method involves equating X from Eqs. (12) and (13). The resulting expression is then substituted into the final partial

derivative in Eq. (14). After some algebraic manipulation, a factored polynomial for a(λr) reads65

(16a3− 24a2 + (9− 3λ2
r)a + (λ2

r − 1)) · (a− 1) = 0 (15)

where its factor of third order recovers Glauert’s original polynomial from Eq. (8).

The same system of equations can be solved instead to compute a polynomial for a′(λr). This time, a′ from Eqs. (12) and

(13) is equated, and the resulting expression for a is then substituted into the partial derivative from Eq. (14). After some

algebraic simplification, a third-order polynomial for a′(λr) is obtained:70

16λ2
r(a

′)3 + 24λ2
r(a

′)2 + (9λ2
r − 3)a′− 2 = 0 (16)

The relations presented in Eqs. (15) and (16) were computed by means of calculus of variations, a methodology different

from Glauert’s original approach. However, both approaches produce identical results for the optimum flow conditions.

2.2 Limiting Case of a & a′ for Low and High Tip Speed Ratio

Next, it is of interest to determine the limiting case for a as λr tends to both 0 and ∞. As λr → 0, Eq. (15) becomes75

16a3− 24a2 + 9a− 1 = (a− 1)(4a− 1)2 = 0 (17)
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which has the trivial roots a = 1
4 ,1. Here, the physical solution of a = 1

4 is consistent with Glauert’s original work. As for the

upper limit of λr →∞ for Eq. (15), the equation can be recast to obtain

1
1 +λ2

r

=
1− 3a

−2(2a− 1)3
, (18)

where it becomes apparent that as the left-hand side of Eq. (18) tends to zero for λr →∞, the right-hand side can only reconcile80

this for a→ 1
3 . This result is again consistent with Glauert’s original solution. Alternatively, the factorization in Eq. (17) can

be used to restate the third-order factor in Eq. (15) to obtain

1
λ2

r

=
1− 3a

(1− a)(1− 4a)2
(19)

which concludes the same for λr → 0,∞ and is in fact a relation used by Glauert in the exact integral for CPmax
, see Appendix

A, and is used in Section 3 for the exact integrals of CT and CBe. For completeness, the limiting case for a′ as λr tends to both85

0 and ∞ is also determined. Equation (16) is rearranged to:

1
λ2

r

=
(4a′+ 3)2

2 +3a′
a′ (20)

For added wake rotation a′ > 0, the left-hand side of Eq. (20) tends to ∞ for λr → 0. This can be reconciled on the right-

hand side by a′→∞. Likewise, as the limit of the left-hand side of Eq. (20) becomes 0 for λr →∞, the right-hand side will

only be satisfied with a physical solution of a′→ 0. Both behaviors are consistent with Glauert’s solution, see Appendix A.90

2.3 Limiting Case of CPmax for Low and High Tip Speed Ratio

The limiting case of the CPmax integral for λr → 0 is not easily shown, and in fact was not explicitly stated in Glauert’s original

work. It is added here as part of the amendment. To better illustrate the behavior, the substitution x = 1−3a is used along with

the practical relation from Eq. (19) at the integration bound a2 such that Eq. (10) becomes:

CPmax
=

(1− 3a2)
(1− a2)(1− 4a2)2

·
(

2
9

)3[
−10.5082−

(64
5

(1− 3a2)5 + 72(1− 3a2)4 + 124(1− 3a2)3

+ 38(1− 3a2)2− 63(1− 3a2)− 12ln(1− 3a2)−
4

(1− 3a2)

)]
(21)95

It is evident that for λr = 0, where a2 = 1
4 , there exists a singularity for CPmax

. Therefore, a limit for CPmax
as λr → 0, or

as a2 → 1
4 , must be taken that results in the following:

lim
a2→ 1

4

CPmax =
0
0

(22)

Since evaluating this limit results in the indeterminate form of 0
0 , the mathematical theorem known as L’Hôpital’s rule can

be applied to determine the true limit using derivatives.100

lim
a2→ 1

4

f(a2)
g(a2)

= lim
a2→ 1

4

f ′(a2)
g′(a2)

= lim
a2→ 1

4

f ′′(a2)
g′′(a2)

(23)
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For ease of reference, the functions f and g extracted from Eq. (21) are explicitly stated below:

f(a2) =
(

2
9

)3[
−10.5082− 64

5
(1− 3a2)5 + 72(1− 3a2)4 + 124(1− 3a2)3

+ 38(1− 3a2)2− 63(1− 3a2)− 12ln(1− 3a2)−
4

(1− 3a2)

]
(24)

g(a2) =
(1− a2)(1− 4a2)2

1− 3a2
(25)105

Applying the limit of a2 → 1
4 (or λr → 0) does result in the following:

lim
a2→ 1

4

f ′(a2)
g′(a2)

= lim
a2→ 1

4

24(64a6
2− 224a5

2 + 308a4
2− 212a3

2 + 77a2
2− 14a2 + 1)

(3a2− 1)2

6(4a2− 1)(4a2
2− 4a2 + 1)

(3a2− 1)2

=
0
0

(26)

Applying L’Hôpital’s rule twice, however, proves the following:

lim
a2→ 1

4

f ′′(a2)
g′′(a2)

= lim
a2→ 1

4

96(192a6
2− 600a5

2 + 742a4
2− 467a3

2 + 159a2
2− 28a2 + 2)

12(24a3
2− 24a2

2 + 8a2− 1)
= 0 (27)

Thereby the intuitive result that CPmax
→ 0 as λr → 0 has been formally shown. Note that the high tip speed ratio limit of110

Eq. 21 for a2 → 1
3 (or λr →∞) is more readily shown with

lim
a2→ 1

3

CPmax = lim
a2→ 1

3

4
(1− a2)(1− 4a2)2

·
(

2
9

)3

=
16
27

, (28)

which indeed recovers the known Betz limit. Next follows an additional amendment to Glauert’s work by means of analytical

derivations for thrust and bending moment coefficients, CT and CBe, based on optimum a and a′ distributions.

3 Exact Integral of the Thrust Coefficient CT Based on Glauert’s Optimum Solution115

The pressure jump, ∆p, generates a rotor thrust, T = ∆p A, across the rotor disk in the axial direction. A dimensionless rotor

thrust coefficient is then defined as:

CT =
T

1
2ρV 2

0 A
(29)

Normalizing the differential form, dT = ∆p dA, with dA = 2πrdr being the area of an incremental disk annulus, results in

the following expression for an incremental thrust coefficient, dCT :120

dCT =
8
λ2

a(1− a)λrdλr (30)

To write CT exclusively in terms of a, differentiating Eq. (19) yields a relation for λrdλr with

λrdλr =
3(4a− 1)(1− 2a)2

(1− 3a)2
da (31)
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such that an integral for CT can be written as:

CT =
8
λ2

λ∫

0

a(1− a)λr dλr

=−24
λ2

λ∫

0

a(1− a)(1− 4a)(1− 2a)2

(1− 3a)2
da (32)125

The same substitution as used by Glauert is carried through, where x = 1− 3a, resulting in

CT =
1
λ2
· 8
243

x1∫

x2

[
(1−x)(2 +x)(1− 4x)(1 +2x)2

x2

]
dx

=− 1
λ2
· 8
243

x2∫

x1

(
16x3 + 28x2− 20x− 25− 1

x
+

2
x2

)
dx (33)

which can be easily integrated to yield the following:

CT =
1
λ2
· 8
243

[
4x4 +

28
3

x3− 10x2− 25x− lnx− 2
x

]x1=
1
4

x2=1−3a2

(34)

To better understand the behavior of the CT integral, Eq. (34) is rewritten again in terms of a. The integration bounds x1130

and x2 are substituted in as 1
4 and (1− 3a2), respectively, where λ2 = λ2

r|a2 such that:

CT =
(1− 3a2)

(1− a2)(1− 4a2)2
· 8
243

[
−13.3272−

(
4(1− 3a2)4 +

28
3

(1− 3a2)3− 10(1− 3a2)2

− 25(1− 3a2)− ln(1− 3a2)−
2

(1− 3a2)

)]

(35)

As λr → 0, or a2 → 1
4 , there exists a singularity and CT is not defined (note: a similar behavior was found earlier for CPmax

).

Indeed the limit for CT as λr → 0, or a2 → 1
4 , becomes:

lim
a2→ 1

4

CT =
0
0

(36)135

Since evaluating this limit results in the indeterminate form of 0
0 , L’Hôpital’s rule can be applied to determine the true limit.

The theorem equates the following limits, where functions f and g are differentiable:

lim
a2→c

f(a2)
g(a2)

= lim
a2→c

f ′(a2)
g′(a2)

(37)

For ease of reference, the functions f and g extracted from Eq. (35) are explicitly stated below:

f(a2) =
8

243

[
−13.3272−

(
4(1− 3a2)4 +

28
3

(1− 3a2)3− 10(1− 3a2)2

− 25(1− 3a2)− ln(1− 3a2)−
2

(1− 3a2)

)]

(38)140

6

https://doi.org/10.5194/wes-2024-111
Preprint. Discussion started: 30 September 2024
c© Author(s) 2024. CC BY 4.0 License.



g(a2) =
(1− a2)(1− 4a2)2

1− 3a2
(39)

Applying L’Hôpital’s rule once results in the following as a2 approaches 1
4 :

lim
a2→ 1

4

f ′(a2)
g′(a2)

= lim
a2→ 1

4

−24a2(16a4
2− 36a3

2 + 28a2
2− 9a2 + 1)

(3a2− 1)2

6(4a2− 1)(4a2
2− 4a2 + 1)

(3a2− 1)2

=
0
0

(40)

It is valid to apply L’Hôpital’s rule a second time, as functions f and g are differentiable. This yields

lim
a2→ 1

4

f ′′(a2)
g′′(a2)

= lim
a2→ 1

4

−80a4
2 + 144a3

2− 84a2
2 + 18a2− 1

12a2
2− 10a2 + 2

=
3
4

(41)145

where it is interesting to note that the thrust coefficient, CT , converges to 0.75 as λ→ 0. Though seemingly a surprising result

at first, it will be reconciled with actuator disk theory in a later section.

Note again that the high tip speed ratio limit of Eq. (35) for λr →∞ (or a2 → 1
3 ) is more readily shown with

lim
a2→ 1

3

CT = lim
a2→ 1

3

2
(1− a2)(1− 4a2)2

· 8
243

=
8
9

(42)

which is also fully consistent with actuator disk theory, as will be shown further below.150

4 Exact Integral of the Bending Moment Coefficient CBe Based on Glauert’s Optimum Solution

The bending moment, Be, is an important structural parameter when assessing the loading of wind turbine blades. A dimen-

sionless bending moment coefficient is defined as:

CBe =
Be

1
2ρV 2

0 AR
(43)

In differential form, dBe is essentially the product of thrust dCT and lever arm r
R of the local annulus such that155

dCBe = dCT ·
r

R

=
8
λ2

a(1− a)λrdλr ·
r

R

=
8
λ3

a(1− a)λ2
rdλr (44)

where Eq. (30) was used. The exact integral for the total bending moment coefficient, CBe is hence defined as:

CBe =

λ∫

0

dCBe =
8
λ3

λ∫

0

a(1− a)λ2
rdλr (45)

7
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Substituting a combination of Eqs. (5) and (31) yields:

CBe =−24
λ3

λ∫

0

a(1− a)3/2(1− 4a)2(1− 2a)2

(1− 3a)5/2
da

(46)160

Once more, the integration substitution is performed, where x = 1− 3a, so that CBe can be solved analytically to:

CBe =
1
λ3
· 8
243 · 271/2

x2∫

x1

(1−x)(2 +x)3/2(1− 4x)2(1 +2x)2

x5/2
dx

=
1
λ3
· 8
243 · 271/2

[
−24ln((x + 2)1/2 + x1/2)

− (x + 2)1/2(192x6 + 408x5− 532x4− 890x3 + 585x2− 260x + 20)
15x3/2

]x1=
1
4

x2=1−3a2

(47)

To better understand the behavior of the CBe function, Eq. (47) is rewritten solely in terms of a. This means substituting

λ3 = λ3
r|a2 in the denominator by raising Eq. (19), which is evaluated at the integration bound a2, to the power 3

2 such that:

λ3 =− (1− a2)
3
2 (1− 4a2)3

(1− 3a2)
3
2

(48)165

The values for x1 and x2 are substituted in as well, being 1
4 and (1−3a2), respectively, where a2 is simply a(λr) such that:

CBe =− (1− 3a2)3/2

(1− a2)3/2(1− 4a2)3
· 8
243 · 271/2

[
2.5457−

(
−24ln[(3− 3a2)1/2 + (1− 3a2)1/2]

− (3− 3a2)1/2 · (192(1− 3a2)6 + 408(1− 3a2)5− 532(1− 3a2)4− 890(1− 3a2)3)
15 · (1− 3a2)3/2

− (3− 3a2)1/2 · (585(1− 3a2)2− 260(1− 3a2) + 20)
15 · (1− 3a2)3/2

)]
(49)

As λr → 0 (or a2 → 1
4 ), the bending moment coefficient, CBe, yields the following indeterminate form:

lim
a→ 1

4

CBe =
f(a2)
g(a2)

=
0
0

(50)

For ease of reference, the functions f and g extracted from Eq. (49) are explicitly stated below:170

f(a) =
8

243 · 271/2

[
2.5457−

(
(−24ln[(3− 3a2)1/2 + (1− 3a2)1/2]

− (3− 3a2)1/2 · (192(1− 3a2)6 + 408(1− 3a2)5− 532(1− 3a2)4− 890(1− 3a2)3)
15 · (1− 3a2)3/2

− (3− 3a2)1/2 · (585(1− 3a2)2− 260(1− 3a2) + 20)
15 · (1− 3a2)3/2

)]
(51)

g(a) =− (1− a2)3/2(1− 4a2)3

(1− 3a2)3/2
(52)
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Using L’Hôpital’s rule once leads to the indeterminate form of 0
0 with

f ′(a2) =
3359232a7

2− 11757312a6
2 + 16166304a5

2− 11127456a4
2 + 4041576a3

2− 734832a2
2 + 52488a2

3
13
2 (1− 3a2)

5
2 (3− 3a2)1/2

g′(a2) =
9(1− a2)1/2 (4a2− 1)2

(
4a2

2− 4a2 + 1
)

(1− 3a2)
5
2

175

and

CBe = lim
a2→ 1

4

f ′(a2)
g′(a2)

=
0
0

(53)

Applying L’Hôpital’s rule a second time still results in the indeterminate form of 0
0 as

f ′′(a2) =

120932352a8
2− 519001344a7

2 + 925888320a6
2− 893765664a5

2 + 509553504a4
2

− 175414896a3
2 + 35429400a2

2− 3779136a2 + 157464

3
13
2 (1− 3a2)

7
2 (3− 3a2)3/2

g′′(a2) =
3456a5

2− 7776a4
2 + 6624a3

2− 2736a2
2 + 558a2− 45

(1− 3a2)7/2(1− a2)1/2
180

and

CBe = lim
a2→ 1

4

f ′′(a2)
g′′(a2)

=
0
0

(54)

Differentiating functions f and g a third time results in a definite value for the limiting case of CBe with

f ′′′(a2) =

3265173504a9
2− 16597965312a8

2 + 36147435840a7
2− 44231007744a6

2 + 33530384160a5
2

− 16363658880a4
2 + 5158048248a3

2− 1017532368a2
2 + 114791256a2− 5668704

3
13
2 (1− 3a2)

9
2 (3− 3a2)

5
2

(55)

g′′′(a2) =
10368a6

2− 31104a5
2 + 36288a4

2− 21312a3
2 + 6642a2

2− 1026a2 + 63

(1− 3a2)
9
2 (1− a2)

3
2

(56)185

and

CBe = lim
a2→ 1

4

f ′′′(a2)
g′′′(a2)

=
1
2

(57)

Note again that the high tip speed ratio limit of Eq. (49) for λr →∞ is more readily shown with

lim
a2→ 1

3

CBe = lim
a2→ 1

3

−(3− 3a2)
1
2 · 4

3

(1− a2)
3
2 (1− 4a2)3

· 8
243 · 27

1
2

=
16
27

(58)

For the high λr limit, the value of CBe approaches 16
27 ≈ 0.5926. Here it is interesting to note that both CPmax and CBe tend190

to the Betz limit as λr →∞, which is reconciled in the next section.
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5 Summary of Coefficients Derived from Glauert’s Optimum Model

Figure 1 shows the three coefficients of interest, CPmax
, CT , and CBe, and their tabulated values over a range of design tip

speed ratios between 0 and 10. Note that Glauert’s original work showed exclusively CPmax
based on optimum flow conditions.

Exact analytical solutions for CT and CBe, on the other hand, constitute an amendment to Glauert’s original work.195

  

Figure 1. Power CPmax , thrust CT ,and bending moment CBe coefficients as functions of tip speed ratio, λ. for optimal a and a′ distribution.

Beginning with the high tip speed ratio limit of λ→∞, both power and bending moment coefficients, CPmax
and CBe,

converge to the Betz limit 16
27 ≈ 0.5926. This may at first seem surprising for CBe; however, it is a direct consequence of the

respective limit for the thrust coefficient, CT . In fact, CT → 8
9 for λ→∞, which describes the limit of actuator disk theory

with CT = 4a(1− a) = 8
9 for the optimum a→ 1

3 . In addition, one consequence of a constant pressure jump, ∆p, across the

rotor disk is a linear thrust distribution dT = ∆p 2πr dr whose center of pressure is known to be at 2
3

r
R . From this simple200

thought experiment, it is indeed understood that CBe = 2
3 CT = 16

27 (Betz limit) for λ→∞.

For the low tip speed ratio limit of λ→ 0, it is known that CPmax
→ 0; however, it has been formally proven for the first

time as part of this amendment using L’Hôpital’s theorem. On the other hand, thrust and bending moment coefficients, CT and

CBe, tend towards non-zero values. The thrust coefficient, CT , remains consistent with a non-rotating actuator disk such that

CT = 4a(1− a) = 3
4 for a→ 1

4 . The center of pressure stays at 2
3

r
R in the limit such that CBe = 2

3 CT = 1
2 , all of which is205

consistent with Fig. 1 and the limit of actuator disk theory. Note however that for rotor disk theory where 0 < λ <∞, the ratio

CBe/CT ≈ 2
3 , though not exactly, as a(λr) ̸= const. in Glauert’s solution, see Fig. A1.
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6 Concluding Remark

This work derived several amendments to Glauert’s original optimum rotor disk solution. First, an alternative approach by

means of calculus of variations was pursued to solve the underlying classical objective function for CPmax
in wind turbine210

aerodynamics. Second, Glauert’s optimum rotor disk solution was used to derive exact solutions for the thrust and bending

moment coefficients, CT and CBe. Here, L’Hôpital’s theorem was employed to determine the convergence behavior of all

three coefficients for λ→ 0, while the high tip speed ratio limit of λ→∞ was more readily shown. Some surprising results

included that both power and bending moment coefficients, CPmax and CBe, approach the Betz limit for λ→∞ and that thrust

and bending moment coefficients, CT and CBe, have non-zero values for λ→ 0. Using a simple thought experiment, it was215

shown that all observations are indeed consistent with the limit of a uniformly loaded (constant pressure jump) actuator disk.

Appendix A: Glauert’s Original CPmax Derivation

The following analysis is adjusted from Glauert’s original derivation (Glauert, 1935) and consistent with other versions pub-

lished in various textbooks (Burton et al., 2011; Hansen, 2008; Manwell et al., 2009; Schaffarczyk, 2014; Sørensen, 2016;

Wilson et al., 1974; Wood, 2011; Schmitz, 2019). The function to be optimized is:220

f(a,a′) = a′(1− a) (A1)

To determine the maximum of f , one must differentiate both sides of the objective function f with respect to the axial

induction factor, a. The result is equated to 0 in order to find the appropriate stationary point, as shown:

df

da
=

da′

da
(1− a)− a′ = 0 (A2)

Rearranging the equation above yields a new condition which must be satisfied at maximum CP :225

da′

da
=

a′

1− a
(A3)

Now, a second look is taken at the pressure relation from Eq. (5) which was known to Glauert. A derivative with respect to

a is taken on both left- and right-hand sides of the equation, resulting in the following:

1− 2a = λ2
r(1 +2a′)

da′

da
(A4)

The right-hand side of Eq. (5) is substituted in for the λ2
r term, and the right-hand side of Eq. (A3) is substituted in for the230

differential term above, simplifying to the following:

1 + a′

1 +2a′
=

a

1− 2a
(A5)

Upon algebraic rearranging of this intermediate step in Eq. (A5), the optimum relationship between a and a′ is revealed:

a′ =
1− 3a

4a− 1
(A6)
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This solution for a′ can be substituted into the pressure relation from Eq. (5) to obtain a relationship between λr and a:235

λ2
r =

(1− a)(1− 4a)2

1− 3a
(A7)

Equation (A7) is then rearranged into a third-degree polynomial representing the optimal axial induction factors across the

rotor disk as a function of local tip speed ratio, λr, as shown below:

16a3− 24a2 + (9− 3λ2
r)a + (λ2

r − 1) = 0 (A8)

A Newton-Raphson algorithm is employed to iteratively solve Glauert’s third-order polynomial, with240

ai+1 = ai−
f(ai)
f ′(ai)

(A9)

The resulting optimum function a(λr) has been tabulated and plotted in Fig. A1 for λr ranging from 0 to 10. A formal proof

of CP exhibiting a maximum, i.e. via d2f
da2 < 0, has only been shown recently (Schmitz, 2019).

  

Figure A1. Glauert’s theoretical solutions for optimum axial and angular induction factors, a and a’ respectively, as a function of local tip

speed ratio, λr

With optimum flow conditions known for a and a′ as a function of λr, Glauert was able to determine the exact solution for

CPmax . Returning to Eq. (6), there is a λ3
rdλr term that must be addressed in order to fully solve CPmax in terms of a. The245

approach taken by Glauert involved taking a second look at Eq. (A7). Upon differentiating both sides of this equation, a new

expression for 2λrdλr is found, relating dλr and da such that

2λrdλr =
6(4a− 1)(1− 2a)2

(1− 3a)2
da (A10)
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The λ3
rdλr term of interest can then be broken into a λ2

r and λrdλr term, for which Eqs. (A7) and (A10) can be substituted

in. Now, the integral for the maximum power coefficient, CPmax
, can be defined by just one unknown, i.e. a, as shown below:250

CPmax
=

8
λ2

λ∫

0

a′(1− a)λ2
r ·λr dλr

=
24
λ2

a2∫

a1

(1− a)2(1− 4a)2(1− 2a)2

(1− 3a)2
da (A11)

Note that the limits of integration have been modified to account for the variable substitution from λr to a. The value of the

lower bound, a1, can be calculated by setting λr equal to 0 in Eq. (A8) and solving for a such that a1 = 1
4 ; the upper bound,

a2, is the solution to Eq. (A8) for a variable input of λr. Through integration by substitution, a new variable x = 1− 3a is

introduced to allow solving for CPmax . The exact integral can now be expressed in terms of only x.255

CPmax =− 1
λ2
· 8
729

x2∫

x1

[
(x + 2)(4x− 1)(2x + 1)

x

]2

dx (A12)

Here the integration bounds must be adjusted to account for the substitution from a into terms of x such that x2 = 1− 3a2

and x1 = 1− 3a. Expanding the integrand and switching the integration bounds to avoid representing the exact integral as a

negative expression yields the following:

CPmax
=

1
λ2
·
(

2
9

)3
x1∫

x2

[
64x4 + 288x3 + 372x2 + 76x− 63− 12

x
+

4
x2

]
dx (A13)260

Integration of Eq. (A13) results in:

CPmax =
1
λ2
·
(

2
9

)3[64
5

x5 + 72x4 + 124x3 + 38x2− 63x− 12lnx− 4
x

]x1=
1
4

x2=1−3a2

(A14)

These results for CPmax
, representing Glauert’s optimum model, are plotted over a range of tip speed ratio, λ, as a solid line

in Fig. A2.
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Figure A2. Maximum power coefficient, CP , for Glauert’s actuator disk model and Betz’s theoretical limit.

The dotted horizontal line represents the theoretical Betz limit at 16
27 = 0.5926. A more compact form of Glauert’s solution265

can be found in Durand’s review (Glauert, 1935) and other texts.
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